BABHTA 1 - ROUND 1

1) Express
$$\frac{-5}{i-\sqrt{3}}$$
 in the form $r(\cos\theta + i\sin\theta)$

2) Find the coordinates of the point P which divides the line segment joining

A(-9, 14) and B($5\cdot4$, $-5\cdot2$) internally in the ratio 5 : 1

BABHTA 2 - ROUND 2

- 1) If α and β are roots of the equation $2x^2 + 5x + 1 = 0$ form an equation whose roots are $\frac{\alpha}{\beta}$ and $\frac{\beta}{\alpha}$. Put answer in the form $ax^2 + bx + c = 0$, where **a**, **b**, $c \in Z$
- 2) If a committee of 5 is to be chosen from 9 people at random, what is the probability that a particular person will be on the committee? Leave your answer in the form $\frac{a}{b}$, where a and $b \in \mathbb{Z}$

BABHTA 3 - ROUND 3

1) The point (3, a) is a solution of the equations

x + 4y + 5 = 0 $bx^{2} + 9xy + 25 = 4y^{2}$

Find the value of a and the value of b, where a and $b \in Z$

2) The points A(1,1), B(0,0) and C(2,-1) form a triangle.

Find the measure of the angle $\angle ABC$ to the nearest degree.

BABHTA 4 - ROUND 4

- 1) In how many ways can a careless secretary place four letters in four envelopes so that nobody gets the right letter?
- 2) Solve the equation $\tan(x) + \tan(2x) = 0$, where $0 \le x \le 2\pi$. Answers in terms of π .

BABHTA 5 - ROUND 5

- 1) Find the coordinates of the foot of the perpendicular from the point (2, -6) to the line 3y x + 2 = 0
- 2) The probability that John will beat Joe in a game of chess is $\frac{2}{3}$. In a series of 6 games, what is the probability that John will win 4 or more games? Answer in form $\frac{a}{b}$ where **a** and **b** \in Z

BABHTA 6 - ROUND 6

1) Find $\int \frac{\cos^5(x)}{\sin^2(x)} dx$

2) Find the equations of the tangents from (-1, 5) to the circle $x^2 + y^2 - 4x + 2y - 31 = 0$

Answers in the form ax+by+c=0, where **a**, **b** and $c \in \mathbb{Z}$

BABHTA 7 - ROUND 7

- 1) In a private sweep, 100 tickets are sold. A man buys one ticket. A prize is awarded on each draw of a ticket. Assuming replacement of a ticket after each draw, find the least number of prizes which must be awarded so that the probability of the man winning at least one prize is at least $\frac{1}{4}$.
- 2) Find the numerical value of the greatest term of the expansion $(1+2x)^{\circ}$ when $x = \frac{1}{3}$. Leave your answer as a fraction.
- 3) Find , in radians, correct to 3 significant figures, the acute angle between the lines

$$3x + 2y = 5$$
 and $2x - y = 6$.

4) Find the value of
$$\frac{Cos(\frac{\pi}{8}) + iSin(\frac{\pi}{8})}{Cos(\frac{3\pi}{8}) - iSin(\frac{3\pi}{8})}$$

BABHTA 8 - ROUND 8

- 1) Differentiate Cos(x), when x is in degrees.
- 2) Find the value of $\sin^2(x) + \sin^2(60^\circ x) + \sin^2(60^\circ + x)$ in the form $\frac{a}{b}$, where **a** and **b** \in Z.
- 3) Julie devises a game in which a player can choose to pay at random from a 1 cent coin, a 5 cent coin, a 20 cent coin and a 50 cent coin. How much should she have charged and still hope to break as even as possible?
- 4) If two litres of a 20% acid solution are mixed with 8 litres of a 50% acid solution, what is the percentage concentration of the resulting solution?

SCOILT – TIEBREAK

- 1) Find the value of x if x 2(1 3x) = 6 + 3(4 x)
- 2) Find the slope of the line passing through A(-3,2) and B(4,-1). Answer as a fraction.
- 3) How many pairs of parallel faces on a regular cube?
- 4) What is the maximum number of points of intersection of four distinct straight lines?
- 5) Find the values of x if $x^2 = 2x + 1$. Answer in surd form.
- 6) Find the range of values of x for which $x^2 \ge 4x + 5$, $x \in \mathbb{R}$
- 7) Solve the following equations for x and y:

$$2y^2 - 3x = 0$$
$$4y - x = 6$$

Write your answer in coordinate form.

- 8) Find the value of $\cos(15^{\circ})$ in simplest surd form.
- 9) Find the length of the tangent from A(8, -3) to the circle $x^2 + y^2 2x + 8y 23 = 0$. Answer in surd form.
- 10) Using only 5c, 10c and 20c coins, in how many ways can you make up 35 cents?
- 11) One bag contains 4 white and 4 black balls, a second bag contains 3 white and 6 black balls, and a third contains 1 white and 5 black balls.If one ball is drawn from each bag find the probability that all are white.
- 12) Using the letters of the word EQUATIONS how many 5 letter "words" contain all the consonants?

13) Find the value of
$$(\sqrt{3} - i)^{10}$$
 in the form x + iy.

14) Find the number of digits that are required to number the pages of a book from page 1 to page 250.

Cumann Oidí Matamaitice na h Éireann – Irish Mathematics Teachers Association Foireann Mata 2012 - Team Maths 2012 – Regional Round

		Answer Key
Round 1	Q1	$\frac{5}{2}(\cos(\frac{\pi}{6}) + i\sin(\frac{\pi}{6}))$ or 2.5(Cos (30) +iSin(30))
	Q2	P(3, -2)
Round 2	Q1	$2x^2 - 21x + 2 = 0$
	Q2	$2x^{2} - 21x + 2 = 0$ $\frac{5}{9}$
Round 3	Q1	a = -2, b = 5
	Q2	a = -2, $b = 572°$
Round 4	Q1	9
	Q2	9 $0, \pi, 2\pi, \frac{\pi}{3}, \frac{2\pi}{3}, \frac{4\pi}{3}, \frac{5\pi}{3}$
Round 5	Q1	$(\frac{1}{5}, -\frac{3}{5})$ or (0.2, -0.6)
	Q2	<u>496</u> 729
Round 6	Q1	$-\frac{1}{\sin(x)} - 2\sin(x) + \frac{\sin^3(x)}{3} + C$
	Q2	y-5=0 and $4x - 3y + 19 = 0$

Round 7		
	Q2	$\frac{224}{9}$
		1.05 radians
	Q4	i
Round 8		$-\frac{\pi}{180}$ Sin $(\frac{\pi x}{180})$ or equivalent
	Q2	$\frac{3}{2}$
	Q3	19 cent
	Q4	44%

	Tiebreak answers:
1)	x = 2
2)	$-\frac{3}{7}$
3)	3
4)	6
5)	$1 \pm \sqrt{2}$
6)	$x \le -1$ or $x \ge 5$
7)	(6,3)
8)	$\frac{\sqrt{6} + \sqrt{2}}{4} \text{OR} \frac{\sqrt{3} + 1}{2\sqrt{2}}$
9)	$\sqrt{10}$
10)	6
11)	$\frac{1}{36}$
12)	600
13)	$512 + 512\sqrt{3}i$
14)	642