OLLSCOIL NA hÉIREANN, CORCAIGH THE NATIONAL UNIVERSITY OF IRELAND, CORK

COLÁISTE NA hOLLSCOILE, CORCAIGH
UNIVERSITY COLLEGE, CORK

TEAM MATH FINAL 2010

ROUND 1

Time allowed: $\underline{\text { Six minutes }}$
Q. 1 Express $x=\frac{2 t+1}{3 t-1}, y=\frac{t+2}{3 t-1}$ in the form $a x+b y+c=0$, where $a, b, c \in \mathbb{R}$.
Q. 2 Evaluate $\lim _{x \rightarrow 0} \frac{\sin 5 x-\sin x}{3 x}$

ROUND 2

Time allowed: Six minutes
Q. 1 Find the value of x that satisfies the equation

$$
\log _{3} x+\log _{9} 16=0, \text { where } x \in \mathbb{Q} .
$$

Q. 2 The line $x-y+3=0$ passes through the centre of a circle.

The points $A(-1,2)$ and $B(2,-4)$ are on the circle.
Write the equation of the circle in the form $x^{2}+y^{2}+2 g x+2 f y+c=0$, where $g, f, c \in \mathbb{R}$.

ROUND 3

Time allowed: Six minutes
Q. $1 \quad$ Solve the equation $\sqrt{x}+\frac{24}{\sqrt{x}}=10$, where $x>0$.
Q. 2 Write $\cos ^{4} x-\sin ^{4} x$ in the form $a \cos b x$, where $a, b \in \mathbb{Z}$.

ROUND 4

Time allowed: $\underline{\text { Six minutes }}$

Q. 1 Find the values of θ that satisfy the equation

$$
|1+\cos 2 \theta+i \sin 2 \theta|=\sin 2 \theta,
$$

where $0^{\circ} \leqslant \theta \leqslant 360^{\circ}$.
Q. 2 Find the equations of the two lines that pass through the point $(2,-1)$ and make an angle of 60° with the x-axis.
Write your answers in the form $a x+b y+c=0$, where $a, b, c \in \mathbb{R}$, using surd values where relevant.

ROUND 5

Time allowed: $\underline{\text { Six minutes }}$
Q. 1 A committee of five is to be formed from a group of nine people which includes Jack and Jill. Jack will not serve on the committee without Jill, but Jill will serve without Jack. In how many ways can the committee be formed?
Q. 2 Taking the earth as a sphere, the diagram shows the circular parallels of latitude 0° and 87.12°.
Taking the length of latitude 0° to be 40000 km , calculate the length of latitude 87.12°, correct to the nearest km.

ROUND 6

Time allowed: $\underline{\text { Six minutes }}$

Q. 1 Writing x^{3} as $x^{2} \cdot x$ or otherwise, evaluate

$$
\int_{\sqrt{2}}^{\sqrt{7}} \frac{x^{3}}{\sqrt{2+x^{2}}} d x .
$$

Write your answer in the form $\frac{a}{b}$, where $a, b \in \mathbb{Z}$.
Q. 2 An ATM machine contains thirty notes.

There is at least one $€ 10$, one $€ 50$ and one $€ 100$ note in the machine.
These are the only notes in the machine and the total value of the thirty notes is €2010.
How many of each of the notes are in the machine?
Write, clearly, the two sets of possible answers.

ROUND 7

Time allowed: $\underline{\text { Six }}$ minutes
Q. 1 Find, correct to two decimal places, the value of x that satisfies

$$
2^{2 x}-2^{x+3}-20=0, \text { where } x \in \mathbb{R}
$$

Q. 2 The volume of a spherical balloon is increasing at the rate of $20 \mathrm{~cm}^{3}$ per second, i.e. $\frac{d v}{d t}=20$.

Find $\frac{d r}{d t}$ when $r=1 \mathrm{~cm}$.
Write your answer in the form $\frac{a}{\pi}$, where $a \in \mathbb{Z}$.
Q. 3 The diagram shows a square of side 4 cm in length and two arcs, each of radius 4 cm and with centres at opposite vertices of the square.
Calculate, in terms of π, the area of the shaded region between the two arcs.
Q. $4 \quad$ Simplify $\left(\begin{array}{cc}\cos 60^{\circ} & -\sin 60^{\circ} \\ \sin 60^{\circ} & \cos 60^{\circ}\end{array}\right)^{11}$.

Write your answer in the form $\frac{1}{2}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, where $a, b, c, d \in \mathbb{R}$, using surd values where relevant.

ROUND 8

Time allowed: $\underline{\text { Six }}$ minutes
Q. 1 The result, either win, lose or draw, of each of four matches is forecast.

Each of the possible results is equally likely for each match.
Find the probability that the forecast is correct for exactly two of the four matches.
Q. 2 Evaluate $\int_{3}^{8} \frac{1}{\sqrt{16+6 x-x^{2}}} d x$.

Write your answer in terms of π.
Q. $3 \quad A(-2,3), B(4,-1)$ and $P(x, y)$ are points on a circle such that $|\angle A P B|=45^{\circ}$. Using the formula $\tan \theta=\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}$, or otherwise, find the equations of two circles that satisfy these conditions.
Write your answers in the form $x^{2}+y^{2}+2 g x+2 f y+c=0$, where $g, f, c \in \mathbb{Z}$.
Q. $4 \quad \alpha$ and β are the roots of the equation $x^{2}-3 x+1=0$.

Calculate the value of $\alpha-\beta$, where $\alpha>\beta$.
Write your answer in the form \sqrt{a}, where $a \in \mathbb{Z}$.

TIE BREAK 1

Maximum time allowed: $\underline{\text { Six }}$ minutes
The team may benefit if the answers are handed up before those of other teams.
Q. 1 Evaluate

$$
\int_{1}^{4} \cos ^{2} x d x+\int_{1}^{4} \sin ^{2} x d x
$$

Q. $2 \quad z=2-3 i$ is a root of

$$
z^{2}+a z+b=0, \text { where } a, b \in \mathbb{R}
$$

Find the value of a and the value of b.
Q. $3 \quad l$ is the line $2 x+3 y-1=0$ and k is the line $x-2 y-5=0$.

Find the equation of the line that passes through the origin and through the point $l \cap k$.
Write your answer in the form $a x+b y=0$, where $a, b \in \mathbb{Z}$.
Q. $4 \quad$ Suppose $y=\log _{e^{2}} x$. Find $\frac{d y}{d x}$.

TIE BREAK 2

Maximum time allowed: $\underline{\text { Six }}$ minutes
The team may benefit if the answers are handed up before those of other teams.
Write

$$
\left(\sin \frac{\pi}{3}+i \cos \frac{\pi}{3}\right)^{20}
$$

in the form $\frac{x}{2}+i \frac{y}{2}$, where $x, y \in \mathbb{R}$, using surd values where relevant.

FINAL 2010: ANSWERS

Round	Question 1	Question 2	Question 3	Question 4
1	$\begin{gathered} 7 x-5 y-3=0 \\ \text { or equivalent } \end{gathered}$	$\frac{4}{3}$		
2	$x=\frac{1}{4}$	$x^{2}+y^{2}+17 x+11 y-10=0$		
3	$x=16$ and $x=36$	$1 \cos 2 x$		
4	$\theta=90^{\circ}$ and $\theta=270^{\circ}$	$\sqrt{3} x-1 y-1-2 \sqrt{3}=0$ and $\sqrt{3} x+1 y+1-2 \sqrt{3}=0$ or equivalent		
5	91	2010 km		
6	$\frac{13}{3}$	$\begin{gathered} 1 \times € 10,18 \times € 50,11 \times € 100 \\ \text { and } 6 \times € 10,9 \times € 50,15 \times € 100 \end{gathered}$		
7	$x=3.32$	$\frac{5}{\pi} \mathrm{~cm} / \mathrm{sec}$	$8 \pi-16 \mathrm{~cm}^{2}$	$\frac{1}{2}\left(\begin{array}{cc}1 & \sqrt{3} \\ -\sqrt{3} & 1\end{array}\right)$
8	$\frac{8}{27}$	$\frac{\pi}{2}$	$\begin{gathered} x^{2}+y^{2}+2 x+4 y-21=0 \text { and } \\ x^{2}+y^{2}-6 x-8 y-1=0 \end{gathered}$	$\alpha-\beta=\sqrt{5}$
TIE 1	3	$a=-4, b=13$	$9 x+17 y=0$ or equivalent	$\frac{d y}{d x}=\frac{1}{2 x}$
TIE 2	$-\frac{1}{2}-i \frac{\sqrt{3}}{2}$			

