OLLSCOIL NA hÉIREANN, CORCAIGH THE NATIONAL UNIVERSITY OF IRELAND, CORK
 COLÁISTE NA hOLLSCOILE, CORCAIGH
 UNIVERSITY COLLEGE, CORK

TEAM MATH FINAL 2008

1. The lines

$$
y=k^{2} x+12 \quad \text { and } \quad 2 k y=4 x+5, \quad(k \neq 0)
$$

are perpendicular. Find the coordinates of the point of intersection of the two lines.
2. Simplify

$$
\frac{4 x^{\frac{3}{2}}-x^{-\frac{1}{2}}}{2 x^{\frac{1}{2}}-x^{-\frac{1}{2}}}, \quad x \neq 0, \frac{1}{2} .
$$

Give your answer in the form $m x+n$ where m and $n \in \mathbf{N}$.
3. Given that

$$
y=a \cos x-b \sin x
$$

and that

$$
\frac{d y}{d x}=0 \quad \text { when } \quad x=\frac{\pi}{3},
$$

find the value for a.
Give your answer in the form

$$
\frac{m b}{\sqrt{n}}
$$

where m and $n \in \mathbf{Z}$.
4. Let A and B be the matrices given by

$$
A=\left(\begin{array}{ll}
3 & 2 \\
4 & 3
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{rr}
3 & 2 \\
-2 & 1
\end{array}\right) .
$$

Find a matrix M such that $M=B A^{-1}$.
5. Find the length of the tangent from the point $(-5,8)$ to the circle

$$
x^{2}+y^{2}-4 x-6 y+3=0 .
$$

6. Given that $\sin \alpha=\frac{3}{5}$ and $\cos \beta=\frac{5}{13}, 0 \leq \alpha \leq \frac{\pi}{2}$ and $0 \leq \beta \leq \frac{\pi}{2}$, find the value of

$$
\tan (\beta-\alpha)
$$

Give your answer in the form $\frac{m}{n}$ where $m, n \in \mathbf{Z}$.
7. The diagram shows the graphs of

$$
y=-x^{2}+2 x+2 \quad \text { and } \quad y=-\frac{1}{2} x+3
$$

Find the area enclosed between them.

8. If $2+\sqrt{3} i$ is a root of a quadratic equation, with real coefficients, find the equation.
Give your answer in the form $a z^{2}+b z+c=0$ where $a, b, c \in \mathbf{Z}$.
9. Given

$$
y=\cos ^{4} x-\sin ^{4} x
$$

evaluate

$$
\frac{d y}{d x}
$$

when $x=\frac{7 \pi}{12}$.
10. If α and β are the roots of the equation

$$
3 x^{2}+5 x+4=0
$$

find the value of

$$
\frac{\alpha}{\beta}+\frac{\beta}{\alpha}
$$

Give your answer in the form $\frac{m}{n}$ where $m, n \in \mathbf{Z}$
11. Find the term which is independent of x in the expansion of

$$
\left(a x^{2}-\frac{b}{x}\right)^{9}
$$

12. Solve

$$
16^{x}-5\left(2^{2 x}\right)+4=0
$$

13. Three indistinguishable coins are placed randomly, in different squares, on the 4×4 grid as shown.
Calculate the probability that no two coins are in the same row or in the same column.

14. The diagram shows a circle with centre at o and radius r. The point a is on the circle and the line segment $[a t]$ is tangent to the circle at a. The line $[o t]$ intersects the circle at the point b and the angle $\theta=\widehat{a o b}<\frac{\pi}{2}$. The area of the region bounded by the line segments $[a t],[t b]$ and the arc $b a$ of the circle is equal to half the area of the sector $a 0 b$. Find an expression for $\tan \theta$ in terms of θ.

15. Four couples are to be seated at a round table. How many ways can this be done if the men and women are seated alternately.
16. Given that $\log _{a} x=b$, express $\log _{a} \frac{1}{x^{2}}$ in terms of b.
17. A bag contains 20 plastic strips whose lengths are each of the lengths 1 cm . to 20 cm . Three strips are chosen, without replacement, from the bag. The first strip is 8 cm . long and the second is 5 cm . long. What is the probability that the length of the third strip chosen is a number that could form a triangle with the lengths of the first two, given that the length of the third strip is a prime.
18. Find $\tan \theta$ where θ is the obtuse angle between the lines $3 x-2 y+1=0$ and $3 x+2 y-1=0$.
Give your answer in the form $\frac{m}{n}$ where $m, n \in \mathbf{Z}$.
19. If

$$
f(x)=\frac{x}{x+1},
$$

find

$$
\lim _{h \rightarrow 0} \frac{f(3+h)-f(3)}{h}
$$

20. Find the equations of all circles which satisfy the following conditions.

The length of the radius is $\sqrt{20}$, the point $(-1,3)$ lies on the circumference and the centre lies on the line $x+y=0$.
Give your answer(s) in the form

$$
(x-h)^{2}+(y-k)^{2}=(\text { radius })^{2} .
$$

