Team Quiz, Saturday, March 4th, 2006 ROUND I

1. A committee of 4 students is to be formed from 5 girls and 7 boys. If the chairperson of this committee must be female and the secretary must be male and the other two members chosen from the remaining students, in how many ways can such a committee be formed?

Answer. There are 5 possible chairwomen and 7 possible secretaries. The other two will be chosen from 10 people. Therefore the answer is

$$
(5)(7)(45)=1575
$$

2. Solve for θ, given that $0<\theta<180^{\circ}$,

$$
\cos 5 \theta+\cos 3 \theta+\cos \theta=0
$$

Answer. Substitute $\cos 5 \theta+\cos \theta=2 \cos 3 \theta \cos 2 \theta$, so

$$
\cos 3 \theta(1+2 \cos 2 \theta)=0
$$

Either

$$
\cos 3 \theta=0
$$

so $\theta=30^{\circ}$ or 90° or 150°, or

$$
\cos 2 \theta=-\frac{1}{2}
$$

so $2 \theta=120^{\circ}$ or $2 \theta=240^{\circ}$. This gives the solutions

$$
30^{\circ}, 60^{\circ}, 90^{\circ}, 120^{\circ}, 150^{\circ} .
$$

ROUND II

3 . Solve for x, given that the logarithms are real numbers,

$$
\log _{5}(x+3)+\log _{5}(x-1)=1
$$

Answer: exponentiate.

$$
(x+3)(x-1)=5, \quad \text { so } \quad x^{2}+2 x-8=0, \quad \text { or } \quad(x+4)(x-2)=0 .
$$

Since $x+3$ and $x-1$ are both positive,

$$
x=2
$$

4. Evaluate

$$
\int_{0}^{1} \frac{e^{x}}{\left(1+e^{x}\right)^{2}} d x
$$

Give your answer in the form

$$
\frac{a}{b}-\frac{a}{e+a}, \quad a, b \in \mathbb{N}
$$

Answer. Substitute $t=e^{x}$, then $u=(t+1)^{2}$:

$$
\begin{aligned}
\int_{1}^{e} \frac{d t}{(t+1)^{2}} & =\int_{1}^{e} \frac{d(t+1)}{(t+1)^{2}}=\left[-\frac{1}{t+1}\right]_{1}^{e} \\
& =\frac{1}{2}-\frac{1}{e+1} . \\
& \text { ROUND III }
\end{aligned}
$$

5 . Find the range of values of k such that the equation below has real roots:

$$
\frac{5-x}{k}=\frac{k}{x+7} .
$$

Give your answer in the form $a \leq k \leq b, \quad a, b \in \mathbb{Z}$.
Answer.

$$
(5-x)(x+7)=k^{2}, \quad \text { so } \quad x^{2}+2 x+k^{2}-35=0
$$

The solutions of the above equation are real if and only if $4-4 k^{2}+4(35)$ is nonnegative, so $36-k^{2} \geq 0$ or

$$
-6 \leq k \leq 6
$$

6. The points $A(-8,6)$ and $B(-6,-8)$ are on the circle with equation $x^{2}+y^{2}=100$.

The perpendicular bisector of $A B$ cuts the circle at a point P in the first quadrant and a point Q in the third quadrant. Calculate $|P Q|$.

Answer: the perpendicular bisector of $A B$ passes through the centre, so $P Q$ is a diameter and its length is

ROUND IV

$7 . \quad S_{1}$ and S_{2} are two concentric circles with centre at $c .[a b]$ is a chord of S_{2} and $a b$ is a tangent to the circle S_{1}. Given that
 $|a b|=10$, find the area (shaded) between the two circles.

Your answer is to be in the form $n \pi, \quad n \in \mathbb{N}$.
Answer: let r be the radius of the smaller circle and R the radius of the larger. From Pythagoras

$$
r^{2}+\left(\frac{|a b|}{2}\right)^{2}=R^{2}
$$

so

$$
R^{2}-r^{2}=25
$$

and the area, $\pi\left(R^{2}-r^{2}\right)$, is

$$
25 \pi .
$$

8. Find all the values of $x \in \mathbb{Z}$ such that

$$
\left(x^{2}-3\right)\left(x^{2}+5\right)<0
$$

Answer: Equivalently, $x^{2}-3<0$, so $x^{2}<3$ and

$$
\begin{array}{|l|}
\hline x=-1,0, \text { or } 1 . \\
\hline
\end{array}
$$

ROUND V

9. Given that

$$
f(x)+3 g(x)=x^{2}+x+6, \quad \text { and } \quad 2 f(x)+4 g(x)=2 x^{2}+4,
$$

find the values of x for which $f(x)=g(x)$.
Answer. Subtract half the second from the first, getting

$$
g(x)=x+4
$$

and $f(x)=x^{2}+x+6-3 g(x)=x^{2}-2 x-6$, so $f(x)-g(x)=x^{2}-3 x-10=(x+2)(x-5)$ which vanishes for

$$
x=-2 \text { or } 5 .
$$

10. Suppose that $\omega^{3}=1, \omega \neq 1$, and k is a positive integer. There are two possible values of $1+\omega^{k}+\omega^{2 k}$, and they belong to \mathbb{N}. Find them.

Answer: $k=1$ gives $1+\omega+\omega^{2}=0, k=2$ gives the same, and $k=3$ gives $1+\omega^{3}+\omega^{3}=3$. The answers are

$$
0 \text { or } 3 \text {. }
$$

ROUND VI

11. When $x^{3}+p x^{2}+q x+1$ is divided by $x-2$ the remainder is 9 ; when divided by $x+3$ the remainder is 19. Find the value of p and the value of q.

Answer: write $f(x)$ for this polynomial. $f(2)=9$ and $f(-3)=19$.

$$
\begin{gathered}
8+4 p+2 q+1=9 \quad \text { and } \quad-27+9 p-3 q+1=19 \\
4 p+2 q=0 \quad \text { and } \quad 9 p-3 q=45
\end{gathered}
$$

so $q=-2 p$ and $3 p-q=15$ so

$$
p=3 \text { and } q=-6 .
$$

12. Find the value of λ for which

$$
3 x+2 y+\lambda(x+y+2)=0
$$

represents the equation of a line perpendicular to the line

$$
x-3 y+1=0 .
$$

Answer: The slope of the second line is $1 / 3$, so the slope of the perpendicular is -3 . The slope of the line

$$
(3+\lambda) x+(2+\lambda) y+2 \lambda=0
$$

is

$$
-\frac{3+\lambda}{2+\lambda}
$$

Equating this to -3 , we get

$$
3+\lambda=3(2+\lambda), \quad 2 \lambda=-3
$$

so

$$
\lambda=-3 / 2 \text {. }
$$

ROUND VII

13. Evaluate

$$
\int_{1}^{2} \frac{d x}{\sqrt{2 x-x^{2}}}
$$

Give your answer in radians.
Answer: substitute $u+1=x$ getting

$$
\begin{gathered}
\int_{0}^{1} \frac{d u}{\sqrt{1-u^{2}}}=\left[\sin ^{-1}(u)\right]_{0}^{1}= \\
\pi / 2 .
\end{gathered}
$$

14. The velocity $v \mathrm{~cm} / \mathrm{sec}$ of a body moving along a straight line is proportional to the square of its distance s from a fixed point O on the line. If $v=2$ when $s=10$, find the acceleration when $s=20$.

Answer: $v=A s^{2}$, and from the data, $A=1 / 50$. For the acceleration $d v / d t$,

$$
\frac{d v}{d t}=2 A s \frac{d s}{d t}=2 A s v=\frac{s v}{25}
$$

With $s=20, v=8$, and the acceleration is

$$
160 / 25=6.4
$$

15. Write

$$
\frac{\sin 5 A+\sin 3 A+\sin A}{\cos 5 A+\cos 3 A+\cos A}
$$

in the form $\tan n A, n \in \mathbb{N}$.
Answer:

$$
\begin{gathered}
\frac{2 \sin 3 A \cos 2 A+\sin 3 A}{2 \cos 3 A \cos 2 A+\cos 3 A}=\frac{(2 \cos 2 A+1) \sin 3 A}{(2 \cos 2 A+1) \cos 3 A}= \\
\tan 3 A .
\end{gathered}
$$

16. Find the values of m for which the line $y+m x+12=0$ is a tangent to the circle

$$
x^{2}+y^{2}-2 x-2 y-6=0 .
$$

Answer: find where the line intersects the circle by substituting $-12-m x$ for y in the equation for the circle, getting
$x^{2}+(12+m x)^{2}-2 x-2(-12-m x)-6=\left(1+m^{2}\right) x^{2}+24 m x+144-2 x+24+2 m x-6=0$, i.e.,

$$
\left(1+m^{2}\right) x^{2}+(26 m-2) x+162=0 .
$$

This has repeated roots if

$$
(26 m-2)^{2}-4\left(1+m^{2}\right)(162)=0, \quad \text { i.e. } \quad(13 m-1)^{2}-\left(1+m^{2}\right)(162)=0
$$

$$
\begin{gathered}
169 m^{2}-26 m+1-162-162 m^{2}=0, \quad \text { i.e. } \quad 7 m^{2}-26 m-161=0 ; \\
m=\frac{26 \pm \sqrt{676+4508}}{14}=\frac{26 \pm \sqrt{5184}}{14}=\frac{26 \pm 72}{14} .
\end{gathered}
$$

Answers are

$$
m=7 \text { or }-23 / 7
$$

ROUND VIII

17. Find the minimum value of

$$
\frac{e^{x}}{x}, \quad x>0 .
$$

Answer: the derivative is

$$
\frac{x e^{x}-e^{x}}{x^{2}}
$$

which vanishes at $x=1$ only, so

$$
\text { the minimum is } e .
$$

18. There exists a function f such that

$$
f\left(x_{1}+x_{2}+x_{3}+x_{4}+x_{5}\right)=f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{3}\right)+f\left(x_{4}\right)+f\left(x_{5}\right)-8
$$

for all real numbers $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$. Calculate $f(0)$.
Answer. Let $x=f(0)$. Then

$$
f(5 \times 0)=5 f(0)-8, \quad \text { so } \quad 4 f(0)=8
$$

and

$$
f(0)=2
$$

19. A box contains red marbles and blue marbles. There are 12 more red marbles than blue marbles and the probability of picking a blue marble is $1 / 4$. How many marbles are there in the box?

Answer: Let x be the number of blue marbles, so the total in the box is $2 x+12$. For the probability to be $1 / 4$, this must equal $4 x$, so $x=6$.

$$
18 \text { red and } 6 \text { blue. }
$$

20. Real numbers a, b, c satisfy the equations

$$
a+b+c=26 \quad \text { and } \quad \frac{1}{a}+\frac{1}{b}+\frac{1}{c}=28 .
$$

Find the value of

$$
\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{a}{c}+\frac{c}{b}+\frac{b}{a} .
$$

Answer. Multiply $(a+b+c)(1 / a+1 / b+1 / c)$:

$$
\frac{a}{a}+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{b}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+\frac{c}{c}=(26)(28)=728 .
$$

Replacing $a / a+b / b+c / c$ by 3 , and subtracting from both sides, we get the answer:

TIE-BREAKER

21. Find the value of $d y / d x$ when $x y^{2}+y-x y=15$, and $x=2, y=3$.

Answer: with implicit differentiation,

$$
y^{2}+2 x y \frac{d y}{d x}+\frac{d y}{d x}-y-x \frac{d y}{d x}=0
$$

$x=2, y=3$,

$$
\begin{gathered}
9+12 \frac{d y}{d x}+\frac{d y}{d x}-3-2 \frac{d y}{d x}=0 \\
6+11 \frac{d y}{d x}=0
\end{gathered}
$$

so the answer is

$$
\begin{array}{|l|}
\hline-6 / 11 . \\
\hline
\end{array}
$$

22. Three fair six-sided dice are rolled. What is the probability that not more than one 5 is thrown?

Answer: let a, b, c be the number rolled by each die. Count the throws in which a, b but not c are 5: 5. Similarly for a, c and b, c. In one other result, $a=b=c=5$, more than one 5 is thrown. There are 16 outcomes with more than one 5 , so there are 200 with at most one: answer

$$
\begin{array}{|l|}
\hline 25 / 27 . \\
\hline
\end{array}
$$

23. Find the value of k if $k\left(x^{2}+2 y^{2}\right)+(y-2 x+1)(y+2 x+3)=0$ represents a circle. Answer. The coefficients of x^{2} and y^{2} are $2 k+1$ and $k-4$, respectively. Equating them, $k=5$.
24. The quadratic

$$
x^{2}-4 x-1=2 k(x-5)
$$

has two equal roots. Calculate the possible values of k.
Answer.

$$
x^{2}-4 x-1=2 k x-10 k=x^{2}-(4+2 k) x+10 k-1 .
$$

This has repeated roots iff

$$
(4+2 k)^{2}=4(10 k-1), \quad \text { so } \quad(k+2)^{2}-10 k+1=0, \quad \text { or } \quad k^{2}-6 k+5=0
$$

Solutions are

$$
k=1 \text { or } 5 \text {. }
$$

