Team Quiz, Saturday, March 4th, 2006 ROUND I

1. A committee of 4 students is to be formed from 5 girls and 7 boys. If the chairperson of this committee must be female and the secretary must be male and the other two members chosen from the remaining students, in how many ways can such a committee be formed?

Answer. There are 5 possible chairwomen and 7 possible secretaries. The other two will be chosen from 10 people. Therefore the answer is

(5)(7)(45) = 1575.

2. Solve for θ , given that $0 < \theta < 180^{\circ}$,

 $\cos 5\theta + \cos 3\theta + \cos \theta = 0.$

Answer. Substitute $\cos 5\theta + \cos \theta = 2 \cos 3\theta \cos 2\theta$, so

$$\cos 3\theta (1 + 2\cos 2\theta) = 0.$$

Either

 $\cos 3\theta = 0,$

so $\theta = 30^{\circ}$ or 90° or 150° , or

$$\cos 2\theta = -\frac{1}{2}$$

so $2\theta = 120^{\circ}$ or $2\theta = 240^{\circ}$. This gives the solutions

 $30^{\circ}, 60^{\circ}, 90^{\circ}, 120^{\circ}, 150^{\circ}.$

ROUND II

3. Solve for x, given that the logarithms are real numbers,

$$\log_5(x+3) + \log_5(x-1) = 1.$$

Answer: exponentiate.

$$(x+3)(x-1) = 5$$
, so $x^2 + 2x - 8 = 0$, or $(x+4)(x-2) = 0$.

Since x + 3 and x - 1 are both positive,

$$x = 2.$$

Evaluate

$$\int_0^1 \frac{e^x}{(1+e^x)^2} dx.$$

Give your answer in the form

$$\frac{a}{b} - \frac{a}{e+a}, \quad a, b \in \mathbb{N}.$$

Answer. Substitute $t = e^x$, then $u = (t+1)^2$:

$$\int_{1}^{e} \frac{dt}{(t+1)^{2}} = \int_{1}^{e} \frac{d(t+1)}{(t+1)^{2}} = \left[-\frac{1}{t+1}\right]_{1}^{e}$$
$$= \frac{1}{2} - \frac{1}{e+1}.$$

ROUND III

5. Find the range of values of k such that the equation below has real roots:

$$\frac{5-x}{k} = \frac{k}{x+7}$$

Give your answer in the form $a \leq k \leq b$, $a, b \in \mathbb{Z}$.

Answer.

$$(5-x)(x+7) = k^2$$
, so $x^2 + 2x + k^2 - 35 = 0$.

The solutions of the above equation are real if and only if $4 - 4k^2 + 4(35)$ is nonnegative, so $36 - k^2 \ge 0$ or

$$-6 \le k \le 6.$$

6. The points A(-8,6) and B(-6,-8) are on the circle with equation $x^2 + y^2 = 100$.

The perpendicular bisector of AB cuts the circle at a point P in the first quadrant and a point Q in the third quadrant. Calculate |PQ|.

Answer: the perpendicular bisector of AB passes through the centre, so PQ is a diameter and its length is

20.

ROUND IV

7. S_1 and S_2 are two concentric circles with centre at c. [ab] is a chord of S_2 and ab is a tangent to the circle S_1 . Given that |ab| = 10, find the area (shaded) between the two circles.

Your answer is to be in the form $n\pi$, $n \in \mathbb{N}$.

Answer: let r be the radius of the smaller circle and R the radius of the larger. From Pythagoras

$$r^2 + \left(\frac{|ab|}{2}\right)^2 = R^2,$$

 \mathbf{SO}

$$R^2 - r^2 = 25$$

 25π .

and the area, $\pi(R^2 - r^2)$, is

8. Find all the values of $x \in \mathbb{Z}$ such that

$$(x^2 - 3)(x^2 + 5) < 0.$$

Answer: Equivalently, $x^2 - 3 < 0$, so $x^2 < 3$ and

$$x = -1, 0, \text{ or } 1.$$

ROUND V

9. Given that

$$f(x) + 3g(x) = x^2 + x + 6$$
, and $2f(x) + 4g(x) = 2x^2 + 4$,

find the values of x for which f(x) = g(x).

Answer. Subtract half the second from the first, getting

$$g(x) = x + 4,$$

and $f(x) = x^2 + x + 6 - 3g(x) = x^2 - 2x - 6$, so $f(x) - g(x) = x^2 - 3x - 10 = (x + 2)(x - 5)$ which vanishes for

$$x = -2 \text{ or } 5.$$

10. Suppose that $\omega^3 = 1$, $\omega \neq 1$, and k is a positive integer. There are two possible values of $1 + \omega^k + \omega^{2k}$, and they belong to N. Find them.

Answer: k = 1 gives $1 + \omega + \omega^2 = 0$, k = 2 gives the same, and k = 3 gives $1 + \omega^3 + \omega^3 = 3$. The answers are

0 or 3.

ROUND VI

11. When $x^3 + px^2 + qx + 1$ is divided by x - 2 the remainder is 9; when divided by x + 3 the remainder is 19. Find the value of p and the value of q.

Answer: write f(x) for this polynomial. f(2) = 9 and f(-3) = 19.

8 + 4p + 2q + 1 = 9 and -27 + 9p - 3q + 1 = 19. 4p + 2q = 0 and 9p - 3q = 45,

so q = -2p and 3p - q = 15 so

$$p = 3 \text{ and } q = -6.$$

12. Find the value of λ for which

$$3x + 2y + \lambda(x + y + 2) = 0$$

represents the equation of a line perpendicular to the line

$$x - 3y + 1 = 0.$$

Answer: The slope of the second line is 1/3, so the slope of the perpendicular is -3. The slope of the line

$$(3+\lambda)x + (2+\lambda)y + 2\lambda = 0$$

is

$$-\frac{3+\lambda}{2+\lambda}.$$

Equating this to -3, we get

$$3 + \lambda = 3(2 + \lambda), \quad 2\lambda = -3,$$

 \mathbf{SO}

$$\lambda = -3/2.$$

ROUND VII

13. Evaluate

$$\int_{1}^{2} \frac{dx}{\sqrt{2x - x^2}}$$

Give your answer in radians.

Answer: substitute u + 1 = x getting

$$\int_0^1 \frac{du}{\sqrt{1-u^2}} = \left[\sin^{-1}(u)\right]_0^1 = \pi/2.$$

14. The velocity v cm/sec of a body moving along a straight line is proportional to the square of its distance s from a fixed point O on the line. If v = 2 when s = 10, find the acceleration when s = 20.

Answer: $v = As^2$, and from the data, A = 1/50. For the acceleration dv/dt,

$$\frac{dv}{dt} = 2As\frac{ds}{dt} = 2Asv = \frac{sv}{25}.$$

With s = 20, v = 8, and the acceleration is

$$160/25 = 6.4$$

15. Write

$$\frac{\sin 5A + \sin 3A + \sin A}{\cos 5A + \cos 3A + \cos A}$$

in the form $\tan nA$, $n \in \mathbb{N}$.

Answer:

$$\frac{2\sin 3A\cos 2A + \sin 3A}{2\cos 3A\cos 2A + \cos 3A} = \frac{(2\cos 2A + 1)\sin 3A}{(2\cos 2A + 1)\cos 3A} = \frac{1}{(2\cos 2A + 1)\cos 3A}$$

16. Find the values of m for which the line y + mx + 12 = 0 is a tangent to the circle

$$x^2 + y^2 - 2x - 2y - 6 = 0.$$

Answer: find where the line intersects the circle by substituting -12-mx for y in the equation for the circle, getting

$$x^{2} + (12 + mx)^{2} - 2x - 2(-12 - mx) - 6 = (1 + m^{2})x^{2} + 24mx + 144 - 2x + 24 + 2mx - 6 = 0,$$

i.e.,

$$(1+m^2)x^2 + (26m-2)x + 162 = 0.$$

This has repeated roots if

 $(26m - 2)^2 - 4(1 + m^2)(162) = 0$, i.e. $(13m - 1)^2 - (1 + m^2)(162) = 0$,

$$169m^{2} - 26m + 1 - 162 - 162m^{2} = 0, \quad \text{i.e.} \quad 7m^{2} - 26m - 161 = 0;$$
$$m = \frac{26 \pm \sqrt{676 + 4508}}{14} = \frac{26 \pm \sqrt{5184}}{14} = \frac{26 \pm 72}{14}.$$
$$\boxed{m = 7 \text{ or } -23/7.}$$

ROUND VIII

$$\frac{e^x}{x}, \quad x > 0.$$

Answer: the derivative is

Answers are

$$\frac{xe^x - e^x}{x^2}$$

which vanishes at x = 1 only, so

the minimum is e.

18. There exists a function *f* such that

$$f(x_1 + x_2 + x_3 + x_4 + x_5) = f(x_1) + f(x_2) + f(x_3) + f(x_4) + f(x_5) - 8$$

for all real numbers x_1, x_2, x_3, x_4, x_5 . Calculate f(0).

Answer. Let x = f(0). Then

$$f(5 \times 0) = 5f(0) - 8$$
, so $4f(0) = 8$,

and

$$f(0) = 2.$$

19. A box contains red marbles and blue marbles. There are 12 more red marbles than blue marbles and the probability of picking a blue marble is 1/4. How many marbles are there in the box?

Answer: Let x be the number of blue marbles, so the total in the box is 2x + 12. For the probability to be 1/4, this must equal 4x, so x = 6.

20. Real numbers a, b, c satisfy the equations

$$a + b + c = 26$$
 and $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 28.$

Find the value of

$$\frac{a}{b} + \frac{b}{c} + \frac{c}{a} + \frac{a}{c} + \frac{c}{b} + \frac{b}{a}.$$

Answer. Multiply (a + b + c)(1/a + 1/b + 1/c):

$$\frac{a}{a} + \frac{a}{b} + \frac{a}{c} + \frac{b}{a} + \frac{b}{b} + \frac{b}{c} + \frac{c}{a} + \frac{c}{b} + \frac{c}{c} = (26)(28) = 728.$$

Replacing a/a + b/b + c/c by 3, and subtracting from both sides, we get the answer:

725.

TIE-BREAKER

21. Find the value of dy/dx when $xy^2 + y - xy = 15$, and x = 2, y = 3. **Answer:** with implicit differentiation,

$$y^2 + 2xy\frac{dy}{dx} + \frac{dy}{dx} - y - x\frac{dy}{dx} = 0,$$

x = 2, y = 3,

$$9 + 12\frac{dy}{dx} + \frac{dy}{dx} - 3 - 2\frac{dy}{dx} = 0,$$

$$6 + 11\frac{dy}{dx} = 0,$$

so the answer is

$$-6/11.$$

22. Three fair six-sided dice are rolled. What is the probability that not more than one 5 is thrown?

Answer: let a, b, c be the number rolled by each die. Count the throws in which a, b but not c are 5: 5. Similarly for a, c and b, c. In one other result, a = b = c = 5, more than one 5 is thrown. There are 16 outcomes with more than one 5, so there are 200 with at most one: answer

23. Find the value of k if $k(x^2 + 2y^2) + (y - 2x + 1)(y + 2x + 3) = 0$ represents a circle. **Answer.** The coefficients of x^2 and y^2 are 2k + 1 and k - 4, respectively. Equating them, k = 5.

24. The quadratic

$$x^2 - 4x - 1 = 2k(x - 5)$$

has two equal roots. Calculate the possible values of k.

Answer.

$$x^{2} - 4x - 1 = 2kx - 10k = x^{2} - (4 + 2k)x + 10k - 1$$

This has repeated roots iff

$$(4+2k)^2 = 4(10k-1)$$
, so $(k+2)^2 - 10k + 1 = 0$, or $k^2 - 6k + 5 = 0$.

Solutions are

$$k = 1 \text{ or } 5.$$