ROUND ONE

Q. 1 Solve the simultaneous equations:

$$
\begin{gathered}
3 x+y=5 \\
x^{2}+y^{2}=25
\end{gathered}
$$

Q. 2 Find the equation of the circle which has $[A B]$ as a diameter, where A and B are the points $(-2,1)$ and $(6,-3)$ respectively.

Write your answer in the form $x^{2}+y^{2}+2 g x+2 f y+c=0, \quad g, f, c \in Z$.

ROUND TWO

Q. $1 \quad$ Given that α and β are the roots of the equation $2 x^{2}-6 x+1=0$, find the value of $\frac{1}{\alpha}+\frac{1}{\beta}$ in its simplest form.
Q. 2 Find the measure of the acute angle between the line $l: 2 x+y-3=0$ and the line $k: x-3 y+2=0$.

Give your answer correct to the nearest degree.

ROUND THREE

Q. $1 \quad$ Write $-\sqrt{3}-i$ in general polar form.
Q. 2 The perpendicular distance from the point $(k, 3)$ to the line $3 x+4 y-2=0$ is 1 unit, where $k \in Q$.

Find the values of k.

ROUND FOUR

Q. 1 Find the values of A for which

$$
\sqrt{3} \tan A=-1 \text {, where } 0^{\circ} \leq A \leq 360^{\circ} .
$$

Q. 2 Find the range of values of x that satisfies the inequality

$$
\frac{x-2}{x+3} \geq \frac{1}{2}, \quad x \neq-3 .
$$

Q. $1 \quad$ Write the equation of the tangent to the curve

$$
x^{2}+y^{2}+x=1 \text { at the point }(0,1)
$$

in the form $a x+b y+c=0$, where $a, b, c \in Z$.

Answer to Q. 1

Q. 2 Within the limits of the given diagram, clearly indicate the set of points that satisfy the inequality

$$
2 x+y \leq 4 .
$$

Team Math - Regional Competition - IMTA 2011

ROUND SIX

Q. 1 In the National Lottery, forty five balls numbered 1 to 45 are placed in a drum. Six balls are taken at random from the drum as the winning combination. If you select six numbers from 1 to 45 , what is the probability that, at most, only one of them matches with the winning combination?
Give your answer in decimal form, correct to two decimal places.
Q. 2 Find the value of x and the value of y for which

$$
\left(\begin{array}{ll}
3 & -5 \\
5 & -8
\end{array}\right)\binom{x}{y}=\binom{11}{18} .
$$

ROUND SEVEN

Q. 1 Find all the values of x that satisfy the equation

$$
\sin 4 x+\cos 2 x=0, \text { where } 0^{\circ} \leq x \leq 180^{\circ} .
$$

Q. $2 \quad A, B$ and C are points on the same level ground. $|\mathrm{AB}|=12 \mathrm{~m}$ and $|\angle C A B|=90^{\circ}$.
A vertical pole is erected at C.
The angles of elevation of the top of the pole from
 A and B are 60° and 30° respectively.

Calculate $|A C|$ in metres, correct to one decimal place.
Q. 3 Find the equations of the asymptotes of the graph of

$$
f(x)=\frac{x-3}{2 x+5}
$$

Q. $4 \quad$ Evaluate $\int_{1}^{9} \frac{x-1}{x+\sqrt{x}} d x$.

ROUND EIGHT

Q. 1 Solve the equation

$$
2 \log _{3} x-\log _{3}(x-2)=2
$$

Q. 2 Mary is playing cards with Liam and Sam. She has nine clubs in her hand. The other four clubs, the Ace, 2, 3 and 4 are randomly dealt to Liam and Sam. Liam holds at least two of the four cards and may have all four.

If Liam shows Mary that he has the 2 of clubs, what is the probability that Sam has the Ace of clubs?
Q. 3 Simplify

$$
\operatorname{Lim}_{h \rightarrow 0}\left(\frac{\tan (x+h)-\tan x}{h}\right)
$$

Q. $4 \quad P$ is the set of lines $3 x+y-t=0$ for all real values of t. Q is the set of lines $k x-2 y-8=0$ for all real values of k.

Write the equation of the line that is common to the sets P and Q in the form $a x+b y+c=0$, where $a, b, c \in Z$.
\qquad

TIE BREAK 1

Write the answers on this page and hand it up

Q. 1 Evaluate $\int_{0}^{\pi} \frac{\sin ^{2} x}{1+\cos x} d x$.

Answer Q 1
Q. 2 Solve the equation

$$
3^{2 x}+8\left(3^{x}\right)-9=0 .
$$

Answer Q 2
Q. 3 For what range of values is $\tan ^{-1}(x)$ defined for all real values of x ?

Answer Q 3
Q. 4 Using only digits from the set $\{2,3,4,5\}$, how many even numbers can be made, if no two digits in any number are the same?

Answer Q 4
\qquad

TIE BREAK 2

Write the answer on this page and hand it up

Find

$$
\frac{d \cos ^{2} x}{d x}+\frac{d \sin ^{2} x}{d x}
$$

Answer

[^0]
Answers

Round 1: Q. $1 \quad(0,5),(3,-4)$
Q. $2 x x^{2}+y^{2}-4 x+2 y-15=0$

Round 2:
Q. 1
6
Q. 2 82°

Round 3: Q. 1
$2\left[\cos \left({ }^{7 \pi} / 6+2 n \pi\right)+i \sin \left({ }^{7 \pi} / 6+2 n \pi\right)\right]$ or
$2\left[\cos \left(210^{\circ}+n 360^{\circ}\right)+i \sin \left(210^{\circ}+n 360^{\circ}\right)\right]$
Q. 2 $-5,-5 / 3$

Round 4: Q. 1
Q. 2
$150^{\circ}, 330^{\circ}$ OR $5 \pi / 6,11 \pi / 6$ $\{x \mid x<-3\} \cup\{x \mid x \geq 7\}$

Round 5:
Q. 1
$x+2 y-2=0$
Q. 2

Round 6:
Q. 1
0.82
Q. 2
$(2,-1)$

Round 7:
Q. 1
$45^{\circ}, 105^{\circ}, 135^{\circ}, 165^{\circ}$
Q. 2
4.2 m
Q. 3
$x=-5 / 2, y=1 / 2$
Q. 4

4

Round 8: Q. 1
Q. 2

3, 6
Q. $3 \sec ^{2} x$ or $\frac{1}{\cos ^{2} x}$
Q. 4
$3 x+y+4=0$

Tie Break 1:
Q. $1 \quad \pi$
Q. 2

0
Q. $3-90^{\circ}<\tan ^{-1}(x)<90^{\circ}$ or $-\pi / 2<\tan ^{-1}(x)<\pi / 2$
Q. 432

[^0]: Team Math - Regional Competition - IMTA 2011

