Q. 1 Solve the simultaneous equations:

$$3x + y = 5$$
$$x^2 + y^2 = 25$$

Q. 2 Find the equation of the circle which has [AB] as a diameter, where A and B are the points (-2, 1) and (6, -3) respectively.

Write your answer in the form $x^2 + y^2 + 2gx + 2fy + c = 0$, $g, f, c \in Z$.

Team Math – Regional Competition – IMTA 2011

ROUND TWO

Q. 1 Given that α and β are the roots of the equation $2x^2 - 6x + 1 = 0$, find the value of $\frac{1}{\alpha} + \frac{1}{\beta}$ in its simplest form.

Q. 2 Find the measure of the acute angle between the line l: 2x + y - 3 = 0 and the line k: x - 3y + 2 = 0.

Give your answer correct to the nearest degree.

ROUND THREE

Q. 1 Write $-\sqrt{3} - i$ in general polar form.

Q. 2 The perpendicular distance from the point (*k*, 3) to the line 3x + 4y - 2 = 0 is 1 unit, where $k \in Q$.

Find the values of *k*.

Team Math – Regional Competition – IMTA 2011

ROUND FOUR

Q. 1 Find the values of A for which $\sqrt{3} \tan A = -1$, where $0^\circ \le A \le 360^\circ$.

Q. 2 Find the range of values of *x* that satisfies the inequality

$$\frac{x-2}{x+3} \ge \frac{1}{2}, \ x \ne -3$$

•

Team Math – Regional Competition – IMTA 2011

Team Math – Regional Competition – IMTA 2011

ROUND SIX

Q. 1 In the National Lottery, forty five balls numbered 1 to 45 are placed in a drum. Six balls are taken at random from the drum as the winning combination. If you select six numbers from 1 to 45, what is the probability that, <u>at most</u>, only one of them matches with the winning combination? Give your answer in decimal form, correct to two decimal places.

Q.2 Find the value of *x* and the value of *y* for which

(3	-5	(x)	_	(11)	
5	-8)	(<i>y</i>)	_	(18)	•

ROUND SEVEN

ROUND EIGHT

Q. 1 Solve the equation

 $2\log_3 x - \log_3 (x - 2) = 2.$

Q. 2 Mary is playing cards with Liam and Sam. She has nine clubs in her hand. The other four clubs, the Ace, 2, 3 and 4 are randomly dealt to Liam and Sam. Liam holds at least two of the four cards and may have all four.

If Liam shows Mary that he has the 2 of clubs, what is the probability that Sam has the Ace of clubs?

Q. 3 Simplify

$$\lim_{h\to 0}\left(\frac{\tan(x+h)-\tan x}{h}\right).$$

Q. 4 *P* is the set of lines 3x + y - t = 0 for all real values of *t*. *Q* is the set of lines kx - 2y - 8 = 0 for all real values of *k*.

Write the equation of the line that is common to the sets *P* and *Q* in the form ax + by + c = 0, where $a, b, c \in Z$.

Team Math – Regional Competition – IMTA 2011

Team Number _____

TIE BREAK 1

white the answers on this page and hand it up	Write	the	answers	on	this	page	and	hand	it u	p
---	-------	-----	---------	----	------	------	-----	------	------	---

Q. 1	Evaluate $\int_{0}^{\pi} \frac{\sin^2 x}{1 + \cos x} dx.$
	Answer Q 1
Q. 2	Solve the equation $3^{2x} + 8(3^{x}) - 9 = 0.$
	Answer Q 2
Q. 3	For what range of values is $\tan^{-1}(x)$ defined for all real values of <i>x</i> ?
	Answer Q 3
Q. 4	Using only digits from the set {2, 3, 4, 5}, how many even numbers can be made, if no two digits in any number are the same?
	Answer Q 4

TIE BREAK 2 Write the answer on this page and hand it up

Find	$\frac{d\cos^2 x}{dx} + \frac{d\sin^2 x}{dx}$	
Answer		

Team Math – Regional Competition – IMTA 2011

			Answers
Round 1:	Q. 1 Q. 2		(0, 5), (3, -4) $x^{2} + y^{2} - 4x + 2y - 15 = 0$
Round 2:	Q. 1 Q. 2		6 82°
Round 3:	Q. 1		$2[\cos(\frac{7\pi}{6} + 2n\pi) + i\sin(\frac{7\pi}{6} + 2n\pi)] \text{ or}$ $2[\cos(210^\circ + n360^\circ) + i\sin(210^\circ + n360^\circ)]$
	Q. 2		$-5, -\frac{5}{3}$
Round 4:	Q. 1 Q. 2		150°, 330° OR $5\pi/_6$, $11\pi/_6$ { $x x < -3$ } \cup { $x x \ge 7$ }
Round 5:	Q. 1 Q. 2		x + 2y - 2 = 0
Round 6:	Q. 1 Q. 2		0·82 (2, -1)
Round 7:	Q. 1 Q. 2 Q. 3 Q. 4		45°, 105°, 135°, 165° 4·2 m $x = -\frac{5}{2}, y = \frac{1}{2}$ 4
Round 8:	Q. 1		$3, 6_{3}$
	Q. 2 0. 3		$sec^2 x \text{ or } \frac{1}{2}$
	Q. 4		$\cos^2 x$ $3x + y + 4 = 0$
Tie Break	1:	Q. 1 Q. 2 Q. 3 Q. 4	$\pi 0 -90^{\circ} < \tan^{-1}(x) < 90^{\circ} \text{ or } -\frac{\pi}{2} < \tan^{-1}(x) < \frac{\pi}{2} 32$
Tie Break	2:		0